All PUMPselector SPA & member EDUR FELUWA HERMETIC KAMAT LEWA MUNSCH NETZSCH sera SERO WITTE Technologies Branchen Supplementary

Efficient and reliable operation on oil fields

NETZSCH delivers rodless progressing cavity pump with underground drive (ESPCP)

Underground driven PCP for a german oil field
In November 2018, a NETZSCH ESPCP system was installed in the oil field of a German oil and gas producer. The picture shows the well, which was converted from a decommissioned pumpjack (right) to the rodless PCP (left).


For almost 70 years, a German oil and gas producer has been operating oil fields south of Bremen. For historical reasons, various types of pumps are used side by side. In an effort to reduce the number of pumping installations, the oil field operator has begun to look for an efficient and durable system capable of combining the advantages of both pump types: a system that combines a submersible motor of a submersible centrifugal pump with a progressing cavity pump.

The company uses different pump types for conveying operations on its crude oil fields. Due to their different design and functions, the different models work with varying degrees of effectiveness in the specific conditions of production wells. “Each type of pump has specific advantages and disadvantages,” explains Jörg Eitler, Global Business Field Manager for Oil & Gas Upstream at NETZSCH. “For example, in the case of pumpjacks and progressing cavity pumps, pump rod fractures occur relatively frequently. Since the rods move constantly during extraction, tubes may become damaged. This is more likely the further the borehole path deviates from the vertical position.” As a result, time-consuming work may be required to repair the damage and resume production. In the case of submersible centrifugal pumps, this risk is much lower. They must be very precisely designed and carefully installed to avoid damaging the underground cable during installation, especially if the borehole path is not vertical. However, once the installation is successfully completed, the cables often have a much longer service life than the rods of progressing cavity pumps and pumpjacks. This is because the cable is not under dynamic load during operation, as is the case with pump rods.

The decision makers considered a combination of progressing cavity pump and submersible centrifugal pump, which combines the advantages of both pump types, to be particularly useful and efficient for the applications in the North German oil fields. The company decided on a special model developed by NETZSCH Pumpen & Systeme GmbH, which does not require a transmission ratio between the motor revolutions and the pump, since the motor selected specifically for this application can be operated at very low frequency. In addition to the progressing cavity pump, the system consists of a permanent magnet motor, sensors, motor protector, bearing unit and a flexible rod, called FlexShaft. Other components are a check valve, a drain valve and a cable that is used to power the motor and to transfer data from the sensor.


Better handling thanks to the special rotor connection and the permanent magnet motor

The ESPCP used by the customer is a model that has a special rotor connection, and is driven from below, from inside the borehole. “The special feature of this pump is that the rotation of the rotor is not driven by the above-ground drive head via a very long shaft or rod, rather the rotor-stator combination and the motor are sunk into the well”, Jörg Eitler explains. The motor and the bearing unit are connected directly to the rotor via a flexible rod. All radial and axial forces of the rotor are absorbed by a special underground bearing housing. There is also a dynamic seal in the well. This moved all critical components of the pumping unit below ground, precluding environmental impact from leaks above ground.

The motor that has been selected for the system is a permanent magnet model (PMM). It is designed to meet the specific requirements of a progressing cavity pump. With this slow-speed 10-pole synchronous motor, the specified speed is the same as the actual speed, eliminating the need for complex slip calculations and speed measurements. Even error-prone, mechanical or magnetically coupled transmission can be dispensed with. A downhole sensor is installed directly underneath the PMM. It provides data for the operation of the production well and data on the machine condition. It also helps to troubleshoot problems in the well.

Cut model of a Progressing Cavity Pump from NETZSCH


Significant advantages compared to PCP models with above-ground drive

The design of the ESPCP system, which is installed in Northern Germany, is adapted to local conditions. It can convey the highly viscous medium, which contains bitumen and paraffin sediments, sand content of up to 40 percent, or salt deposits, at a pressure of up to 300 bar. A gas proportion of up to 40 percent of the pump intake does not pose a problem during extraction, because the technology of the progressing cavity pump allows conveyance of different phases of a fluid. It also conveys low volumes of 3 to 20 m³/day as efficiently as medium volumes of 10 to 100 m³/day. Since there is no pump rod, the pump can now be used even for horizontal or heavily deflected boreholes. Eliminating pump rods rules out rod breakage, as well as friction of rods against the piping. This significantly reduces the risk of pipe leakage. It also allows higher flow rates in the tubing and enables use of tubes with a smaller diameter. Pressure losses in the tubing are also lower. “Rods cannot get twisted, which rules out a dangerous backspin”, says the upstream specialist at NETZSCH.

Other advantages of these rodless PCP over conventional PCP models are lower axial load, larger operating window of 180-500 revolutions, integrated pump and motor protection and the choice of a special, highly xylene-resistant elastomer. Other features include an automatic integrated pump control, which starts the pump after a power failure and the remote measurement of real-time pump data for early detection of errors. The system also has a smaller footprint than all systems with above-ground drives.

In November 2018, the NETZSCH ESPCP system was installed and put into operation in the oil field south of Bremen. It worked flawlessly until the first unscheduled shutdown of the production well, which was caused by exceeding external limits that were not related to the pump. The operator therefore plans to purchase additional systems.


Installation of the rodless progressing cavity pump in the borehole
Since there is no pump rod, the pump can be used even for horizontal or heavily deflected boreholes. It means that the so-called Dog Leg Severity (DLS) is very high.



Source & Pictures: NETZSCH

Share page

Here you will find the right pump
technology for your requirement.

Start Selector